Ðề: test bài viết
\[
\begin{array}{l}
u = Ln(x^2 - x + 1) \\
v = Ln(2x^2 - x + 1) \\
\\
= > x^2 - x + 1 = e^u \\
2x^2 - x + 1 = e^v \\
= > Ln[(x^2 - x + 1)(2x^2 - x + 1)] = Ln(e^u .e^v ) = u + v \\
= > /u/ + /v/ = /u + v/ \\
/u + v/ \le /u/ + /v/ < = > uv \ge 0 \\
< = > (u \ge 0 \wedge v \ge 0) \vee (u \le 0 \wedge v \le 0) \\
TH1:u \ge 0 \wedge v \ge 0 \\
< = > (x^2 - x + 1 \ge 1) \wedge (2x^2 - x + 1 \ge 1) \\
< = > \\
\end{array}
\]
[tex]\left\{ {\frac{1}{2},\sqrt 3 ,\sin 5,\ln 4,\omega ,\pi ,\Delta ,\int\limits_2^1 {xdx,\frac{{\sqrt[4]{3}}}{2}} ,\sum\limits_{i = 1}^{10} {x_i } ,\theta ,\overline {abbc} ,\lambda } \right\} \in R[/tex]
thay đổi nội dung bởi: LeGiang, 25-11-2007 lúc 09:22 AM.
|